Deciphering the Signaling Network in the Leading Edge of the Migrating Cells

汪迎春, Ph.D. 中科院遗传与发育研究所 ycwang@genetics.ac.cn

Chemotaxis Requires Directional Pseudopodium Formation

Chemotaxis plays an integral role in

many biological processes:

- 1. Immune function
- 2. Embryo development
- 3. Wound repair
- 4. Tumor formation and metastasis

Cell polarization to form dominant pseudopodium/invadopodium is necessary for sustained migration and metastasis

Important Questions/Goals

How are molecular signals temporally and spatially organized in polarized cells to regulate and maintain persistent directional cell migration?

- Targeting of specific proteins to different poles of migrating cells.
- Phosphorylation/activation changes.

Goals:

- Understand the mechanism of cell migration and caner metastasis.
- Identification of pseudopodium-specific proteins and phosphoproteins will reveal markers of metastatic cells for drugable targets

Isolate the cell body and pseudopodium compartments for large scale proteomics analysis.

Model for Cell Polarity and Pseudopodia Purification

Isolated Pseudopodium

Pseudopodia on lower Membrane Surface Stained with Rodamine Phalloidin

Application of the Model in Neurite Purification for Proteomics Study

PNAS, 2008, 105:1931-6

Strategies for Proteomics Study of PD/CB Specific Protein

Quantitative Identification CB and PD Proteome

From > 5000 identified proteins, the relative abundances of 3509 proteins that have at least two peptides identified were determined by peptide spectrum counting.

T-test: P<0.001

Pathways Enriched in PD or CB

Quantitative Identification of Phosphoproteome in CB and PD

Summary of PhosphoProteomics

A total of 228 phosphopeptides were identified.

> 77 showed a 1.5 fold or more enrichment in
PD.

96 showed a 1.5 fold or more enrichment in CB.

Conservative Analysis of Phosphosites

• 89%, 80%, and 44% of the phosphosites are conserved in mouse, rat, and zebrafish, respectively.

Erk is Highly Phosphorylated (activated) in PD

Comparison of CB-/PD- Enriched Phosphorylation Motifs

The distribution pattern of kinase phosphorylation motifs and associated kinase classes of identified phosphopeptides.

Possible Pathways that Activate Erk in PD

Phosphotyrosine Proteome in CB and PD

Sequest database searching for identification Peptide spectrum count for quantitation

Blot: PY

PY Protein Distribution in Polarized Cells

- 309 PY proteins were identified by a two peptide match.
- PD indicates the PY proteins are enriched in pseudopodium,
- CB indicates the PY proteins are enriched in cell body
- EQ indicates the PY proteins are equally distributed in both fractions.
- The data is from the pool of five independent experiments.

PY Interactome of Polarized Cells

Red indicates that the protein is enriched in pseudopodium.

Green indicates that the protein is enriched in cell body.

The network was generated using Ingenuity software.

PEAK1: A Novel Pseudopodium Enriched Atypical Kinase

>1746 aa, 193 KD protein.

- >10 peptides were identified by MudPIT. 5 independent experiments.
- >15 tyrosine sites are predicted to be phosphorylated by NetPhos 2.0
- > No transmembrane helix was predicted by TMHMM program.
- Highly conserved from Zebrafish to Human.

PEAK1 Regulates Early Stage Cell Spreading

Attach to 5 ug/ml fibronectin

Scale bar: 100 um

(*, P<0.001; **, P<0.01)

PEAK1 Is Necessary for Optimal Cell Migration

Depletion of PEAK1 Inhibits Chemotaxis

Over-expression of PEAK1 enhances chemotaxis

Depletion of PEAK1 also inhibits haptotaxis

PEAK1 Colocalizes with Actin Cytoskeleton

3T3 Cells transfected with GFP or GFP-PEAK1 were stained with Rhodamine phalloidin

PEAK1 Colocalizes with Focal Adhesions

3T3 Cells expressing GFP or GFP-PEAK1 were stained with Rhodamine phalloidin

	GFP	N 1	N 2	N 3	C1	C 2	FL
Starve	-	+	+++				+
Serum	-	++	+++		-		+++
PDGF	-	++	+++	-	-		+++

PEAK1 Actin-Cytoskeleton localization Depends on Growth Factor Signaling

PEAK1 Undergoes Src-dependent Tyrosine Phosphorylation in Response to Cell Adhesion or EGF Stimulation

PEAK1 Regulates Cytoskeletal and Focal Adhesion Proteins

Proposed Signaling Pathway of PEAK1-mediated Cell Migration

Pseudopodia Formation/Cell Migration

PEAK1 Is an Active Kinase

PEAK1 autophosphorylation

Size exclusion chromatography purification of PEAK1 kinase domain

In-vitro kinase assay

In-gel kinase assay

Amplification of PEAK1 in Metastatic Cancer Cell Lines and Cancer Patients

P1=patient 1 P2=patient 2

Human cancer tissue array indicates that PEAK1 is amplified in ~82% of colon cancers and corresponding liver metastases 22 patient array

PEAK1 Promotes Oncogeneic Growth in Cancer Cells

MDA435 cells stably expressing GFP (control) or GFP-PEAK1 fusion protein (PEAK1) were allowed to form colonies in soft agar supplemented with 10% FBS for 14 days. The number and the sizes of the colonies were measured by the software MetaMorph.

Reducing PEAK1 Inhibits Oncogenic Growth

MDA-435 cells stably expressing PEAK1 were infected with shRNA lentivirus. The cells were then cultured in softagar to form colonies

PEAK1 Promotes Tumor Progression in vivo

Depletion of PEAK1 Inhibits Tumor Growth

Summary

- 1. Systematical identification of proteome and phosphoproteome in PD and CB.
- 2. Cytoskeletal and signaling proteins are highly enriched in PD while cell cycle and metabolism proteins are enriched in CB.
- 3. Discovered a novel PD-enriched kinase PEAK1 that is colocalized with cytoskeleton and is necessary for cell migration and tumor progression.

Future Work

Study signaling mechanism underlying cell migration and cancer metastasis.

> Develop bioinformatics tool to facilitate analyzing proteomics data.

> Membrane proteomics.

Acknowledgements

UCSD, Klemke Lab

Dr. Richard L. Klemke Dr. Konstantin Stoletov Dr. Oliver Pertz Wei Wang Laurie Gay Erin Zardouzian Tiffany Liu

Scripps Research Institute

Dr. John Yates Dr. Greg Cantin Dr. Meng-Qiu Dong

PNNL

- Dr. Richard D. Smith
- Dr. David Camp
- Dr. Jon M. Jacobs
- Dr. Feng Yang
- Dr. Shi-Jian Ding
- Dr. Wei-jun Qian

Susan G. Komen Postdoctoral Fellowship PDF0503999